Combustion and Atomization Performance Testing

UCI Combustion Laboratory

11 Oct 14

Content

- Experimental Apparatus
- Test Results
 - Diesel Fuel Combustion Performance
 - Diesel Fuel Atomization Performance
 - Diesel Fuel Physical Properties

- PGE250 Exhaust Analyzer
 - · NO_x
 - co
 - CO₂
 - O₂
- · Flame Ionization Analyzer
 - UHC
- Nikon J1 Camera
 - 1200 fps high speed color video
- Andor ICCD Camera
 - Capture OH Chemiluminescence images

• Basic Emissions Performance

- Sample 1 exhibits superior combustion efficiency than baseline.
- The combustion efficiency trends match the measured exhaust temperatures trend—higher efficiency leads to higher temperature because more of the fuel energy is converted to heat.
- Lower combustion efficiency means less potential fuel energy is converted to heat.

- This is qualitative imaging based on color video.
- · Average image based on 400 individual frames.
- The overall flame shape and appearance varies somewhat.
- The "sooting propensity" is determined by adding up the pixel intensities on the images to left. This is qualitative but suggests somewhat lower sooting for Sample 1.

- Qualitative based on OH* imaging
- Not really any discernible differences??

Diesel Atomization Results

- Single frame from high speed video
- All diesels displayed similar atomization behavior. Follows consistently with previous diesels sprayed during other testing.
- Fuels ejected from nozzle at similar angles to left hand side of image, no noticeable differences

- Sample 1 has superior atomization performance (i.e. finer drops).
- · The Average Drop size indicates this.
- The weighted D32 represents an overall drop size for each fuel.
- Note that the combustion efficiency trends match the inverse of the size. Smaller drop sizes for Sample 1 lead to better combustion efficiency..
- The spray plume spread of Sample 1 also appears to be greater than that of the baseline.

Diesel Physical Properties

- Viscosity (falling ball method) ~70 F
 - Essentially the same within experimental uncertainty

• Baseline: 2.81 centipoise +/- 0.09

- Sample 1: 2.94 centipoise +/- 0.11
- Surface Tension (Stalagmometer) ~70 F
 - Slightly lower surface tension for Sample 1:

• Baseline: 27.98 dynes/cm +/- 0.001

• Sample 1: 27.56 dynes/cm +/- 0.001

 Falling Ball method cannot capture any non-newtonian behavior—need to test again with a different method that can resolve any shear thinning/thickening behavior

